萬盛學電腦網

 萬盛學電腦網 >> Linux教程 >> Linux操作系統內核搶占補丁的基本原理

Linux操作系統內核搶占補丁的基本原理

class="21446">

  CPU在內核中運行時並不是處處不可搶占的,內核中存在一些空隙,在這時進行搶占是安全的,內核搶占補丁的基本原理就是將SMP可並行的代碼段看成是可以進行內核搶占的區域。

  2.4內核正好細化了多CPU下的內核線程同步機構,對不可並行的指令塊用spinlock和rwlock作了細致的表示,該補丁的實現可謂水到渠成。具體的方法就是在進程的任務結構上增加一個preempt_count變量作為內核搶占鎖,它隨著spinlock和rwlock一起加鎖和解鎖。當preempt_count為0時表示可以進行內核調度。內核調度器的入口為preempt_schedule(),它將當前進程標記為TASK_PREEMPTED狀態再調用schedule(),在TASK_PREEMPTED狀態,schedule()不會將進程從運行隊列中刪除。

  下面是內核搶占補丁的主要代碼示意:


arch/i386/kernel/entry.S:
preempt_count = 4 # 將task_struct中的flags用作preempt_count,flags被移到了別
的位置
ret_from_exception: # 從異常返回
#ifdef CONFIG_SMP
GET_CURRENT(%ebx)
movl processor(%ebx),%eax
shll $CONFIG_X86_L1_CACHE_SHIFT,%eax
movl SYMBOL_NAME(irq_stat)(,%eax),%ecx # softirq_active
testl SYMBOL_NAME(irq_stat)+4(,%eax),%ecx # softirq_mask
#else
movl SYMBOL_NAME(irq_stat),%ecx # softirq_active
testl SYMBOL_NAME(irq_stat)+4,%ecx # softirq_mask
#endif
jne handle_softirq
#ifdef CONFIG_PREEMPT
cli
incl preempt_count(%ebx) # 異常的入口沒有禁止內核調度的指令,與ret_from_intr
匹配一下
#endif
ENTRY(ret_from_intr) # 硬件中斷的返回
GET_CURRENT(%ebx)
#ifdef CONFIG_PREEMPT
cli
decl preempt_count(%ebx) # 恢復內核搶占標志
#endif
movl EFLAGS(%esp),%eax # mix EFLAGS and CS
movb CS(%esp),%al
testl $(VM_MASK | 3),%eax # return to VM86 mode or non-supervisor?
jne ret_with_reschedule
#ifdef CONFIG_PREEMPT
cmpl $0,preempt_count(%ebx)
jnz restore_all # 如果preempt_count非零則表示禁止內核搶占
cmpl $0,need_resched(%ebx)
jz restore_all #
movl SYMBOL_NAME(irq_stat)+irq_stat_local_bh_count CPU_INDX,%ecx
addl SYMBOL_NAME(irq_stat)+irq_stat_local_irq_count CPU_INDX,%ecx
jnz restore_all
incl preempt_count(%ebx)
sti
call SYMBOL_NAME(preempt_schedule)
jmp ret_from_intr # 新進程返回,返回ret_from_intr恢復搶占標志後再返回
#else
jmp restore_all
#endif
ALIGN
handle_softirq:
#ifdef CONFIG_PREEMPT
cli
GET_CURRENT(%ebx)
incl preempt_count(%ebx)
sti
#endif
call SYMBOL_NAME(do_softirq)
jmp ret_from_intr
ALIGN
reschedule:
call SYMBOL_NAME(schedule) # test
jmp ret_from_sys_call
include/asm/hw_irq.h:
...
#ifdef CONFIG_PREEMPT
#define BUMP_CONTEX_SWITCH_LOCK
GET_CURRENT
"incl 4(%ebx)nt"
#else
#define BUMP_CONTEX_SWITCH_LOCK
#endif
#define SAVE_ALL 硬件中斷保護入口現場
"cldnt"
"pushl %esnt"
"pushl %dsnt"
"pushl %eaxnt"
"pushl %ebpnt"
"pushl %edint"
"pushl %esint"
"pushl %edxnt"
"pushl %ecxnt"
"pushl %ebxnt"
"movl $" STR(__KERNEL_DS) ",%edxnt"
"movl %edx,%dsnt"
"movl %edx,%esnt"
BUMP_CONTEX_SWITCH_LOCK # 硬件中斷的入口禁止內核搶占
include/linux/spinlock.h:
#ifdef CONFIG_PREEMPT
#define switch_lock_count() current->preempt_count
#define in_ctx_sw_off() (switch_lock_count().counter) 判斷當前進程的搶占計數
是否非零
#define atomic_ptr_in_ctx_sw_off() (&switch_lock_count())
#define ctx_sw_off() 禁止內核搶占
do {
atomic_inc(atomic_ptr_in_ctx_sw_off()); 當前進程的內核搶占計數增1
} while (0)
#define ctx_sw_on_no_preempt() 允許內核搶占
do {
atomic_dec(atomic_ptr_in_ctx_sw_off()); 當前進程的內核搶占計數減1
} while (0)
#define ctx_sw_on() 允許並完成內核搶占
do {
if (atomic_dec_and_test(atomic_ptr_in_ctx_sw_off()) &&
current->need_resched)
preempt_schedule();
} while (0)
#define spin_lock(lock)
do {
ctx_sw_off(); 進入自旋鎖時禁止搶占
_raw_spin_lock(lock);
} while(0)
#define spin_trylock(lock) ({ctx_sw_off(); _raw_spin_trylock(lock) ? 鎖定並
測試原來是否上鎖
1 : ({ctx_sw_on(); 0;});})
#define spin_unlock(lock)
do {
_raw_spin_unlock(lock);
ctx_sw_on(); 離開自旋鎖時允許並完成內核搶占
} while (0)
#define read_lock(lock) ({ctx_sw_off(); _raw_read_lock(lock);})
#define read_unlock(lock) ({_raw_read_unlock(lock); ctx_sw_on();})
#define write_lock(lock) ({ctx_sw_off(); _raw_write_lock(lock);})
#define write_unlock(lock) ({_raw_write_unlock(lock); ctx_sw_on();})
#define write_trylock(lock) ({ctx_sw_off(); _raw_write_trylock(lock) ?
1 : ({ctx_sw_on(); 0;});})
...
include/asm/softirq.h:
#define cpu_bh_disable(cpu) do { ctx_sw_off(); local_bh_count(cpu)++; barrie
r(); } while (0)
#define cpu_bh_enable(cpu) do { barrier(); local_bh_count(cpu)--;ctx_sw_on()
} while (0)
kernel/schedule.c:
#ifdef CONFIG_PREEMPT
asmlinkage void preempt_schedule(void)
{
while (current->need_resched) {
ctx_sw_off();
current->state |= TASK_PREEMPTED;
schedule();
current->state &= ~TASK_PREEMPTED;
ctx_sw_on_no_preempt();
}
}
#endif
asmlinkage void schedule(void)
{
struct schedule_data * sched_data;
struct task_struct *prev, *next, *p;
struct list_head *tmp;
int this_cpu, c;
#ifdef CONFIG_PREEMPT
ctx_sw_off();
#endif
if (!current->active_mm) BUG();
need_resched_back:
prev = current;
this_cpu = prev->processor;
if (in_interrupt())
goto scheduling_in_interrupt;
release_kernel_lock(prev, this_cpu);
/* Do "administrative" work here while we don't hold any locks */
if (softirq_active(this_cpu) & softirq_mask(this_cpu))
goto handle_softirq;
handle_softirq_back:
/*
* 'sched_data' is protected by the fact that we can run
* only one process per CPU.
*/
sched_data = & aligned_data[this_cpu].schedule_data;
spin_lock_irq(&runqueue_lock);
/* move an exhausted RR process to be last.. */
if (prev->policy == SCHED_RR)
goto move_rr_last;
move_rr_back:
switch (prev->state) {
case TASK_INTERRUPTIBLE:
if (signal_pending(prev)) {
prev->state = TASK_RUNNING;
break;
}
default:
#ifdef CONFIG_PREEMPT
if (prev->state & TASK_PREEMPTED)
break; 如果是內核搶占調度,則保留運行隊列
#endif
del_from_runqueue(prev);
#ifdef CONFIG_PREEMPT
case TASK_PREEMPTED:
#endif
case TASK_RUNNING:
}
prev->need_resched = 0;
/*
* this is the scheduler proper:
*/
repeat_schedule:
/*
* Default process to select..
*/
next = idle_task(this_cpu);
c = -1000;
if (task_on_runqueue(prev))
goto still_running;
still_running_back:
list_for_each(tmp, &runqueue_head) {
p = list_entry(tmp, struct task_struct, run_list);
if (can_schedule(p, this_cpu)) {
int weight = goodness(p, this_cpu, prev->active_mm);
if (weight > c)
c = weight, next = p;
}
}
/* Do we need to re-calculate counters? */
if (!c)
goto recalculate;
/*
* from this point on nothing can prevent us from
* switching to the next task, save this fact in
* sched_data.
*/
sched_data->curr = next;
#ifdef CONFIG_SMP
next->has_cpu = 1;
next->processor = this_cpu;
#endif
spin_unlock_irq(&runqueue_lock);
if (prev == next)
goto same_process;
#ifdef CONFIG_SMP
/*
* maintain the per-process 'last schedule' value.
* (this has to be recalculated even if we reschedule to
* the same process) Currently this is only used on SMP,
* and it's approximate, so we do not have to maintain
* it while holding the runqueue spinlock.
*/
sched_data->last_schedule = get_cycles();
/*
* We drop the scheduler lock early (it's a global spinlock),
* thus we have to lock the previous process from getting
* rescheduled during switch_to().
*/
#endif /* CONFIG_SMP */
kstat.context_swtch++;
/*
* there are 3 processes which are affected by a context switch:
*
* prev == .... ==> (last => next

copyright © 萬盛學電腦網 all rights reserved