這篇文章主要介紹了linux中編寫並發隊列類,功能有:並發阻塞隊列、有超時限制、有大小限制
設計並發隊列 代碼如下: #include <pthread.h> #include <list> using namespace std; template <typename T> class Queue { public: Queue( ) { pthread_mutex_init(&_lock, NULL); } ~Queue( ) { pthread_mutex_destroy(&_lock); } void push(const T& data); T pop( ); private: list<T> _list; pthread_mutex_t _lock; }; template <typename T> void Queue<T>::push(const T& value ) { pthread_mutex_lock(&_lock); _list.push_back(value); pthread_mutex_unlock(&_lock); } template <typename T> T Queue<T>::pop( ) { if (_list.empty( )) { throw "element not found"; } pthread_mutex_lock(&_lock); T _temp = _list.front( ); _list.pop_front( ); pthread_mutex_unlock(&_lock); return _temp; } 上述代碼是有效的。但是,請考慮這樣的情況:您有一個很長的隊列(可能包含超過 100,000 個元素),而且在代碼執行期間的某個時候,從隊列中讀取數據的線程遠遠多於添加數據的線程。因為添加和取出數據操作使用相同的互斥鎖,所以讀取數據的速度會影響寫數據的線程訪問鎖。那麼,使用兩個鎖怎麼樣?一個鎖用於讀取操作,另一個用於寫操作。給出修改後的 Queue 類。 代碼如下: template <typename T> class Queue { public: Queue( ) { pthread_mutex_init(&_rlock, NULL); pthread_mutex_init(&_wlock, NULL); } ~Queue( ) { pthread_mutex_destroy(&_rlock); pthread_mutex_destroy(&_wlock); } void push(const T& data); T pop( ); private: list<T> _list; pthread_mutex_t _rlock, _wlock; }; template <typename T> void Queue<T>::push(const T& value ) { pthread_mutex_lock(&_wlock); _list.push_back(value); pthread_mutex_unlock(&_wlock); } template <typename T> T Queue<T>::pop( ) { if (_list.empty( )) { throw "element not found"; } pthread_mutex_lock(&_rlock); T _temp = _list.front( ); _list.pop_front( ); pthread_mutex_unlock(&_rlock); return _temp; } 設計並發阻塞隊列 目前,如果讀線程試圖從沒有數據的隊列讀取數據,僅僅會拋出異常並繼續執行。但是,這種做法不總是我們想要的,讀線程很可能希望等待(即阻塞自身),直到有數據可用時為止。這種隊列稱為阻塞的隊列。如何讓讀線程在發現隊列是空的之後等待?一種做法是定期輪詢隊列。但是,因為這種做法不保證隊列中有數據可用,它可能會導致浪費大量 CPU 周期。推薦的方法是使用條件變量,即 pthread_cond_t 類型的變量。 代碼如下: template <typename T> class BlockingQueue { public: BlockingQueue ( ) { pthread_mutexattr_init(&_attr); // set lock recursive pthread_mutexattr_settype(&_attr,PTHREAD_MUTEX_RECURSIVE_NP); pthread_mutex_init(&_lock,&_attr); pthread_cond_init(&_cond, NULL); } ~BlockingQueue ( ) { pthread_mutex_destroy(&_lock); pthread_cond_destroy(&_cond); } void push(const T& data); bool push(const T& data, const int seconds); //time-out push T pop( ); T pop(const int seconds); // time-out pop private: list<T> _list; pthread_mutex_t _lock; pthread_mutexattr_t _attr; pthread_cond_t _cond; }; template <typename T> T BlockingQueue<T>::pop( ) { pthread_mutex_lock(&_lock); while (_list.empty( )) { pthread_cond_wait(&_cond, &_lock) ; } T _temp = _list.front( ); _list.pop_front( ); pthread_mutex_unlock(&_lock); return _temp; } template <typename T> void BlockingQueue <T>::push(const T& value ) { pthread_mutex_lock(&_lock); const bool was_empty = _list.empty( ); _list.push_back(value); pthread_mutex_unlock(&_lock); if (was_empty) pthread_cond_broadcast(&_cond); } 並發阻塞隊列設計有兩個要注意的方面: 1.可以不使用 pthread_cond_broadcast,而是使用 pthread_cond_signal。但是,pthread_cond_signal 會釋放至少一個等待條件變量的線程,這個線程不一定是等待時間最長的讀線程。盡管使用 pthread_cond_signal 不會損害阻塞隊列的功能,但是這可能會導致某些讀線程的等待時間過長。 2.可能會出現虛假的線程喚醒。因此,在喚醒讀線程之後,要確認列表非空,然後再繼續處理。強烈建議使用基於 while 循環的 pop()。 設計有超時限制的並發阻塞隊列 在許多系統中,如果無法在特定的時間段內處理新數據,就根本不處理數據了。例如,新聞頻道的自動收報機顯示來自金融交易所的實時股票行情,它每 n 秒收到一次新數據。如果在 n 秒內無法處理以前的一些數據,就應該丟棄這些數據並顯示最新的信息。根據這個概念,我們來看看如何給並發隊列的添加和取出操作增加超時限制。這意味著,如果系統無法在指定的時間限制內執行添加和取出操作,就應該根本不執行操作。 代碼如下: template <typename T> bool BlockingQueue <T>::push(const T& data, const int seconds) { struct timespec ts1, ts2; const bool was_empty = _list.empty( ); clock_gettime(CLOCK_REALTIME, &ts1); pthread_mutex_lock(&_lock); clock_gettime(CLOCK_REALTIME, &ts2); if ((ts2.tv_sec – ts1.tv_sec) <seconds) { was_empty = _list.empty( ); _list.push_back(value); } pthread_mutex_unlock(&_lock); if (was_empty) pthread_cond_broadcast(&_cond); } template <typename T> T BlockingQueue <T>::pop(const int seconds) { struct timespec ts1, ts2; clock_gettime(CLOCK_REALTIME, &ts1); pthread_mutex_lock(&_lock); clock_gettime(CLOCK_REALTIME, &ts2); // First Check: if time out when get the _lock if ((ts1.tv_sec – ts2.tv_sec) < seconds) { ts2.tv_sec += seconds; // specify wake up time while(_list.empty( ) && (result == 0)) { result = pthread_cond_ti