萬盛學電腦網

 萬盛學電腦網 >> 網絡編程 >> 編程語言綜合 >> Ruby實現的最短編輯距離計算方法

Ruby實現的最短編輯距離計算方法

   這篇文章主要介紹了Ruby實現的最短編輯距離計算方法,本文直接給出實現代碼,需要的朋友可以參考下

  利用動態規劃算法,實現最短編輯距離的計算。

   代碼如下:

  #encoding: utf-8

  #author: xu jin

  #date: Nov 12, 2012

  #EditDistance

  #to find the minimum cost by using EditDistance algorithm

  #example output:

  # "Please input a string: "

  # exponential

  # "Please input the other string: "

  # polynomial

  # "The expected cost is 6"

  # The result is :

  # ["e", "x", "p", "o", "n", "e", "n", "-", "t", "i", "a", "l"]

  # ["-", "-", "p", "o", "l", "y", "n", "o", "m", "i", "a", "l"]

  p "Please input a string: "

  x = gets.chop.chars.map{|c| c}

  p "Please input the other string: "

  y = gets.chop.chars.map{|c| c}

  x.unshift(" ")

  y.unshift(" ")

  e = Array.new(x.size){Array.new(y.size)}

  flag = Array.new(x.size){Array.new(y.size)}

  DEL, INS, CHA, FIT = (1..4).to_a #deleat, insert, change, and fit

  def edit_distance(x, y, e, flag)

  (0..x.length - 1).each{|i| e[i][0] = i}

  (0..y.length - 1).each{|j| e[0][j] = j}

  diff = Array.new(x.size){Array.new(y.size)}

  for i in(1..x.length - 1) do

  for j in(1..y.length - 1) do

  diff[i][j] = (x[i] == y[j])? 0: 1

  e[i][j] = [e[i-1][j] + 1, e[i][j - 1] + 1, e[i-1][j - 1] + diff[i][j]].min

  if e[i][j] == e[i-1][j] + 1

  flag[i][j] = DEL

  elsif e[i][j] == e[i-1][j - 1] + 1

  flag[i][j] = CHA

  elsif e[i][j] == e[i][j - 1] + 1

  flag[i][j] = INS

  else flag[i][j] = FIT

  end

  end

  end

  end

  out_x, out_y = [], []

  def solution_structure(x, y, flag, i, j, out_x, out_y)

  case flag[i][j]

  when FIT

  out_x.unshift(x[i])

  out_y.unshift(y[j])

  solution_structure(x, y, flag, i - 1, j - 1, out_x, out_y)

  when DEL

  out_x.unshift(x[i])

  out_y.unshift('-')

  solution_structure(x, y, flag, i - 1, j, out_x, out_y)

  when INS

  out_x.unshift('-')

  out_y.unshift(y[j])

  solution_structure(x, y, flag, i, j - 1, out_x, out_y)

  when CHA

  out_x.unshift(x[i])

  out_y.unshift(y[j])

  solution_structure(x, y, flag, i - 1, j - 1, out_x, out_y)

  end

  #if flag[i][j] == nil ,go here

  return if i == 0 && j == 0

  if j == 0

  out_y.unshift('-')

  out_x.unshift(x[i])

  solution_structure(x, y, flag, i - 1, j, out_x, out_y)

  elsif i == 0

  out_x.unshift('-')

  out_y.unshift(y[j])

  solution_structure(x, y, flag, i, j - 1, out_x, out_y)

  end

  end

  edit_distance(x, y, e, flag)

  p "The expected edit distance is #{e[x.length - 1][y.length - 1]}"

  solution_structure(x, y, flag, x.length - 1, y.length - 1, out_x, out_y)

  puts "The result is : n #{out_x}n #{out_y}"

copyright © 萬盛學電腦網 all rights reserved