萬盛學電腦網

 萬盛學電腦網 >> 數據庫 >> mssql數據庫 >> 聚集索引和非聚集索引

聚集索引和非聚集索引

   聚集索引

  一種索引,該索引中鍵值的邏輯順序決定了表中相應行的物理順序。

  聚集索引確定表中數據的物理順序。聚集索引類似於電話簿,後者按姓氏排列數據。由於聚集索引規定數據在表中的物理存儲順序,因此一個表只能包含一個聚集索引。但該索引可以包含多個列(組合索引),就像電話簿按姓氏和名字進行組織一樣。

  聚集索引對於那些經常要搜索范圍值的列特別有效。使用聚集索引找到包含第一個值的行後,便可以確保包含後續索引值的行在物理相鄰。例如,如果應用程序執行 的一個查詢經常檢索某一日期范圍內的記錄,則使用聚集索引可以迅速找到包含開始日期的行,然後檢索表中所有相鄰的行,直到到達結束日期。這樣有助於提高此 類查詢的性能。同樣,如果對從表中檢索的數據進行排序時經常要用到某一列,則可以將該表在該列上聚集(物理排序),避免每次查詢該列時都進行排序,從而節 省成本。

  當索引值唯一時,使用聚集索引查找特定的行也很有效率。例如,使用唯一雇員 ID 列 emp_id 查找特定雇員的最快速的方法,是在 emp_id 列上創建聚集索引或 PRIMARY KEY 約束。

  非聚集索引

  一種索引,該索引中索引的邏輯順序與磁盤上行的物理存儲順序不同。

  索引是通過二叉樹的數據結構來描述的,我們可以這麼理解聚簇索引:索引的葉節點就是數據節點。而非聚簇索引的葉節點仍然是索引節點,只不過有一個指針指向對應的數據塊。如下圖:

聚集索引和非聚集索引 三聯

  (非聚集索引)

  (聚集索引)

  一、深入淺出理解索引結構

  實際上,您可以把索引理解為一種特殊的目錄。微軟的SQL SERVER提供了兩種索引:聚集索引(clustered index,也稱聚類索引、簇集索引)和非聚集索引(nonclustered index,也稱非聚類索引、非簇集索引)。下面,我們舉例來說明一下聚集索引和非聚集索引的區別:

  其實,我們的漢語字典的正文本身就是一個聚集索引。比如,我們要查“安”字,就會很自然地翻開字典的前幾頁,因為“安”的拼音是“an”,而按照拼音排序漢字的字典是以英文字母“a”開頭並以“z”結尾的,那麼“安”字就自然地排在字典的前部。如果您翻完了所有以“a”開頭的部分仍然找不到這個字,那麼就說明您的字典中沒有這個字;同樣的,如果查“張”字,那您也會將您的字典翻到最後部分,因為“張”的拼音是“zhang”。也就是說,字典的正文部分本身就是一個目錄,您不需要再去查其他目錄來找到您需要找的內容。我們把這種正文內容本身就是一種按照一定規則排列的目錄稱為“聚集索引”。

  如果您認識某個字,您可以快速地從自動中查到這個字。但您也可能會遇到您不認識的字,不知道它的發音,這時候,您就不能按照剛才的方法找到您要查的字,而需要去根據“偏旁部首”查到您要找的字,然後根據這個字後的頁碼直接翻到某頁來找到您要找的字。但您結合“部首目錄”和“檢字表”而查到的字的排序並不是真正的正文的排序方法,比如您查“張”字,我們可以看到在查部首之後的檢字表中“張”的頁碼是672頁,檢字表中“張”的上面是“馳”字,但頁碼卻是63頁,“張”的下面是“弩”字,頁面是390頁。很顯然,這些字並不是真正的分別位於“張”字的上下方,現在您看到的連續的“馳、張、弩”三字實際上就是他們在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。我們可以通過這種方式來找到您所需要的字,但它需要兩個過程,先找到目錄中的結果,然後再翻到您所需要的頁碼。我們把這種目錄純粹是目錄,正文純粹是正文的排序方式稱為“非聚集索引”。

  通過以上例子,我們可以理解到什麼是“聚集索引”和“非聚集索引”。進一步引申一下,我們可以很容易的理解:每個表只能有一個聚集索引,因為目錄只能按照一種方法進行排序。

  二、何時使用聚集索引或非聚集索引

  下面的表總結了何時使用聚集索引或非聚集索引(很重要):

  動作描述使用聚集索引使用非聚集索引

  列經常被分組排序應應

  返回某范圍內的數據應不應

  一個或極少不同值不應不應

  小數目的不同值應不應

  大數目的不同值不應應

  頻繁更新的列不應應

  外鍵列應應

  主鍵列應應

  頻繁修改索引列不應應

  事實上,我們可以通過前面聚集索引和非聚集索引的定義的例子來理解上表。如:返回某范圍內的數據一項。比如您的某個表有一個時間列,恰好您把聚合索引建立在了該列,這時您查詢2004年1月1日至2004年10月1日之間的全部數據時,這個速度就將是很快的,因為您的這本字典正文是按日期進行排序的,聚類索引只需要找到要檢索的所有數據中的開頭和結尾數據即可;而不像非聚集索引,必須先查到目錄中查到每一項數據對應的頁碼,然後再根據頁碼查到具體內容。

  三、結合實際,談索引使用的誤區

  理論的目的是應用。雖然我們剛才列出了何時應使用聚集索引或非聚集索引,但在實踐中以上規則卻很容易被忽視或不能根據實際情況進行綜合分析。下面我們將根據在實踐中遇到的實際問題來談一下索引使用的誤區,以便於大家掌握索引建立的方法。

  1、主鍵就是聚集索引

  這種想法筆者認為是極端錯誤的,是對聚集索引的一種浪費。雖然SQL SERVER默認是在主鍵上建立聚集索引的。

  通常,我們會在每個表中都建立一個ID列,以區分每條數據,並且這個ID列是自動增大的,步長一般為1。我們的這個辦公自動化的實例中的列Gid就是如此。此時,如果我們將這個列設為主鍵,SQL SERVER會將此列默認為聚集索引。這樣做有好處,就是可以讓您的數據在數據庫中按照ID進行物理排序,但筆者認為這樣做意義不大。

  顯而易見,聚集索引的優勢是很明顯的,而每個表中只能有一個聚集索引的規則,這使得聚集索引變得更加珍貴。

  從我們前面談到的聚集索引的定義我們可以看出,使用聚集索引的最大好處就是能夠根據查詢要求,迅速縮小查詢范圍,避免全表掃描。在實際應用中,因為 ID號是自動生成的,我們並不知道每條記錄的ID號,所以我們很難在實踐中用ID號來進行查詢。這就使讓ID號這個主鍵作為聚集索引成為一種資源浪費。其次,讓每個ID號都不同的字段作為聚集索引也不符合“大數目的不同值情況下不應建立聚合索引”規則;當然,這種情況只是針對用戶經常修改記錄內容,特別是索引項的時候會負作用,但對於查詢速度並沒有影響。

  在辦公自動化系統中,無論是系統首頁顯示的需要用戶簽收的文件、會議還是用戶進行文件查詢等任何情況下進行數據查詢都離不開字段的是“日期”還有用戶本身的“用戶名”。

  通常,辦公自動化的首頁會顯示每個用戶尚未簽收的文件或會議。雖然我們的where語句可以僅僅限制當前用戶尚未簽收的情況,但如果您的系統已建立了很長時間,並且數據量很大,那麼,每次每個用戶打開首頁的時候都進行一次全表掃描,這樣做意義是不大的,絕大多數的用戶1個月前的文件都已經浏覽過了,這樣做只能徒增數據庫的開銷而已。事實上,我們完全可以讓用戶打開系統首頁時,數據庫僅僅查詢這個用戶近3個月來未閱覽的文件,通過“日期”這個字段來限制表掃描,提高查詢速度。如果您的辦公自動化系統已經建立的2年,那麼您的首頁顯示速度理論上將是原來速度8倍,甚至更快。

  在這裡之所以提到“理論上”三字,是因為如果您的聚集索引還是盲目地建在ID這個主鍵上時,您的查詢速度是沒有這麼高的,即使您在“日期”這個字段上建立的索引(非聚合索引)。下面我們就來看一下在1000萬條數據量的情況下各種查詢的速度表現(3個月內的數據為25萬條):

  (1)僅在主鍵上建立聚集索引,並且不劃分時間段:

  Select gid,fariqi,neibuyonghu,title from tgongwen

  用時:128470毫秒(即:128秒)

  (2)在主鍵上建立聚集索引,在fariq上建立非聚集索引:

  select gid,fariqi,neibuyonghu,title from Tgongwen

  where fariqi> dateadd(day,-90,getdate())

  用時:53763毫秒(54秒)

  (3)將聚合索引建立在日期列(fariqi)上:

  select gid,fariqi,neibuyonghu,title from Tgongwen

  where fariqi> dateadd(day,-90,getdate())

  用時:2423毫秒(2秒)

  雖然每條語句提取出來的都是25萬條數據,各種情況的差異卻是巨大的,特別是將聚集索引建立在日期列時的差異。事實上,如果您的數據庫真的有1000 萬容量的話,把主鍵建立在ID列上,就像以上的第1、2種情況,在網頁上的表現就是超時,根本就無法顯示。這也是我摒棄ID列作為聚集索引的一個最重要的因素。得出以上速度的方法是:在各個select語句前加:

  declare @d datetime

  set @d=getdate()

  並在select語句後加:

  select [語句執行花費

copyright © 萬盛學電腦網 all rights reserved