jiffies是Linux系統中的全局變量,與時間有關,那麼jiffies變量具體有哪些作用呢?下面小編就給大家介紹下Linux全局變量jiffies的用法,感興趣的朋友不妨來了解下吧。
系統運行時間以秒為單位,等於jiffies/Hz。
注意,jiffies類型為無符號長整型(unsigned long),其他任何類型存放它都不正確。
將以秒為單位的時間轉化為jiffies:
seconds * Hz
將jiffies轉化為以秒為單位的時間:
jiffies / Hz
相比之下,內核中將秒轉換為jiffies用的多些。
jiffies的內部表示
jiffies定義於文件中:
/*
* The 64-bit value is not atomic - you MUST NOT read it
* without sampling the sequence number in xtime_lock.
* get_jiffies_64() will do this for you as appropriate.
*/
extern u64 __jiffy_data jiffies_64;
extern unsigned long volatile __jiffy_data jiffies;
ld(1)腳本用於連接主內核映像(在x86上位於arch/i386/kernel/vmlinux.lds.S中),然後用jiffies_64變量的初值覆蓋jiffies變量。因此jiffies取整個jiffies_64變量的低32位。
訪問jiffies的代碼只會讀取jiffies_64的低32位,通過get_jiffies_64()函數就可以讀取整個64位的值。在64位體系結構上,jiffies_64和jiffies指的是同一個變量。
#if (BITS_PER_LONG 《 64)
u64 get_jiffies_64(void);
#else
static inline u64 get_jiffies_64(void)
{
return (u64)jiffies;
}
#endif
在中
#if (BITS_PER_LONG 《 64)
u64 get_jiffies_64(void)
{
unsigned long seq;
u64 ret;
do {
seq = read_seqbegin(&xtime_lock);
ret = jiffies_64;
} while (read_seqretry(&xtime_lock, seq));
return ret;
}
jiffies的回繞wrap around
當jiffies的值超過它的最大存放范圍後就會發生溢出。對於32位無符號長整型,最大取值為(2^32)-1,即429496795。如果節拍計數達到了最大值後還要繼續增加,它的值就會回繞到0。
內核提供了四個宏來幫助比較節拍計數,它們能正確的處理節拍計數回繞的問題:
/*
* These inlines deal with timer wrapping correctly. You are
* strongly encouraged to use them
* 1. Because people otherwise forget
* 2. Because if the timer wrap changes in future you won‘t have to
* alter your driver code.
*
* time_after(a,b) returns true if the time a is after time b.
*
* Do this with “《0” and “》=0” to only test the sign of the result. A
* good compiler would generate better code (and a really good compiler
* wouldn’t care)。 Gcc is currently neither.
*/
#define time_after(a,b) /
(typecheck(unsigned long, a) && /
typecheck(unsigned long, b) && /
((long)(b) - (long)(a) 《 0))
#define time_before(a,b) time_after(b,a)
#define time_after_eq(a,b) /
(typecheck(unsigned long, a) && /
typecheck(unsigned long, b) && /
((long)(a) - (long)(b) 》= 0))
#define time_before_eq(a,b) time_after_eq(b,a)
/* Same as above, but does so with platform independent 64bit types.
* These must be used when utilizing jiffies_64 (i.e. return value of
* get_jiffies_64() */
#define time_after64(a,b) /
(typecheck(__u64, a) && /
typecheck(__u64, b) && /
((__s64)(b) - (__s64)(a) 《 0))
#define time_before64(a,b) time_after64(b,a)
#define time_after_eq64(a,b) /
(typecheck(__u64, a) && /
typecheck(__u64, b) && /
((__s64)(a) - (__s64)(b) 》= 0))
#define time_before_eq64(a,b) time_after_eq64(b,a)
用戶空間和HZ
上一頁12下一頁共2頁
問題提出:
在2.6以前的內核中,如果改變內核中的HZ值會給用戶空間中某些程序造成異常結果。因為內核是以節拍數/秒的形式給用戶空間導出這個值的,應用程序便依賴這個特定的HZ值。如果在內核中改變了HZ的定義值,就打破了用戶空間的常量關系---用戶空間並不知道新的HZ值。
解決方法:
內核更改所有導出的jiffies值。內核定義了USER_HZ來代表用戶空間看到的HZ值。在x86體系結構上,由於HZ值原來一直是100,所以USER_HZ值就定義為100。內核可以使用宏jiffies_to_clock_t()將一個有HZ表示的節拍計數轉換為一個由USER_HZ表示的節拍計數。
在中
/*
* Convert jiffies/jiffies_64 to clock_t and back.
*/
clock_t jiffies_to_clock_t(long x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
return x / (HZ / USER_HZ);
#else
u64 tmp = (u64)x * TICK_NSEC;
do_div(tmp, (NSEC_PER_SEC / USER_HZ));
return (long)tmp;
#endif
}
unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
if (x 》= ~0UL / (HZ / USER_HZ))
return ~0UL;
return x * (HZ / USER_HZ);
#else
u64 jif;
/* Don‘t worry about loss of precision here 。。 */
if (x 》= ~0UL / HZ * USER_HZ)
return ~0UL;
/* 。。 but do try to contain it here */
jif = x * (u64) HZ;
do_div(jif, USER_HZ);
return jif;
#endif
}
u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
do_div(x, HZ / USER_HZ);
#else
/*
* There are better ways that don’t overflow early,
* but even this doesn‘t overflow in hundreds of years
* in 64 bits, so.。
*/
x *= TICK_NSEC;
do_div(x, (NSEC_PER_SEC / USER_HZ));
#endif
return x;
}
在中
/*
* do_div() is NOT a C function. It wants to return
* two values (the quotient and the remainder), but
* since that doesn’t work very well in C, what it
* does is:
*
* - modifies the 64-bit dividend _in_place_
* - returns the 32-bit remainder
*
* This ends up being the most efficient “calling
* convention” on x86.
*/
#define do_div(n,base) ({ /
unsigned long __upper, __low, __high, __mod, __base; /
__base = (base); /
asm(“”:“=a” (__low), “=d” (__high):“A” (n)); /
__upper = __high; /
if (__high) { /
__upper = __high % (__base); /
__high = __high / (__base)