這篇文章主要介紹了Python函數式編程指南(四):生成器詳解,本文講解了生成器簡介、生成器函數、生成器函數的FAQ等內容,需要的朋友可以參考下
4. 生成器(generator)
4.1. 生成器簡介
首先請確信,生成器就是一種迭代器。生成器擁有next方法並且行為與迭代器完全相同,這意味著生成器也可以用於Python的for循環中。另外,對於生成器的特殊語法支持使得編寫一個生成器比自定義一個常規的迭代器要簡單不少,所以生成器也是最常用到的特性之一。
從Python 2.5開始,[PEP 342:通過增強生成器實現協同程序]的實現為生成器加入了更多的特性,這意味著生成器還可以完成更多的工作。這部分我們會在稍後的部分介紹。
4.2. 生成器函數
4.2.1. 使用生成器函數定義生成器
如何獲取一個生成器?首先來看一小段代碼:
代碼如下:
>>> def get_0_1_2():
... yield 0
... yield 1
... yield 2
...
>>> get_0_1_2
我們定義了一個函數get_0_1_2,並且可以查看到這確實是函數類型。但與一般的函數不同的是,get_0_1_2的函數體內使用了關鍵字yield,這使得get_0_1_2成為了一個生成器函數。生成器函數的特性如下:
1.調用生成器函數將返回一個生成器;
代碼如下:
>>> generator = get_0_1_2()
>>> generator
2.第一次調用生成器的next方法時,生成器才開始執行生成器函數(而不是構建生成器時),直到遇到yield時暫停執行(掛起),並且yield的參數將作為此次next方法的返回值;
代碼如下:
>>> generator.next()
0
3.之後每次調用生成器的next方法,生成器將從上次暫停執行的位置恢復執行生成器函數,直到再次遇到yield時暫停,並且同樣的,yield的參數將作為next方法的返回值;
代碼如下:
>>> generator.next()
1
>>> generator.next()
2
4.如果當調用next方法時生成器函數結束(遇到空的return語句或是到達函數體末尾),則這次next方法的調用將拋出StopIteration異常(即for循環的終止條件);
代碼如下:
>>> generator.next()
Traceback (most recent call last):
File "
StopIteration
5.生成器函數在每次暫停執行時,函數體內的所有變量都將被封存(freeze)在生成器中,並將在恢復執行時還原,並且類似於閉包,即使是同一個生成器函數返回的生成器,封存的變量也是互相獨立的。
我們的小例子中並沒有用到變量,所以這裡另外定義一個生成器來展示這個特點:
代碼如下:
>>> def fibonacci():
... a = b = 1
... yield a
... yield b
... while True:
... a, b = b, a+b
... yield b
...
>>> for num in fibonacci():
... if num > 100: break
... print num,
...
1 1 2 3 5 8 13 21 34 55 89
看到while True可別太吃驚,因為生成器可以掛起,所以是延遲計算的,無限循環並沒有關系。這個例子中我們定義了一個生成器用於獲取斐波那契數列。
4.2.2. 生成器函數的FAQ
接下來我們來討論一些關於生成器的有意思的話題。
1.你的例子裡生成器函數都沒有參數,那麼生成器函數可以帶參數嗎?
當然可以啊親,而且它支持函數的所有參數形式。要知道生成器函數也是函數的一種:)
代碼如下:
>>> def counter(start=0):
... while True:
... yield start
... start += 1
...
這是一個從指定數開始的計數器。
2.既然生成器函數也是函數,那麼它可以使用return輸出返回值嗎?
不行的親,是這樣的,生成器函數已經有默認的返回值——生成器了,你不能再另外給一個返回值;對,即使是return None也不行。但是它可以使用空的return語句結束。如果你堅持要為它指定返回值,那麼Python將在定義的位置贈送一個語法錯誤異常,就像這樣:
代碼如下:
>>> def i_wanna_return():
... yield None
... return None
...
File "
SyntaxError: 'return' with argument inside generator
3.好吧,那人家需要確保釋放資源,需要在try...finally中yield,這會是神馬情況?(我就是想玩你)我在finally中還yield了一次!
Python會在真正離開try...finally時再執行finally中的代碼,而這裡遺憾地告訴你,暫停不算哦!所以結局你也能猜到吧!
代碼如下:
>>> def play_u():
... try:
... yield 1
... yield 2
... yield 3
... finally:
... yield 0
...
>>> for val in play_u(): print val,
...
1 2 3 0
*這與return的情況不同。return是真正的離開代碼塊,所以會在return時立刻執行finally子句。
*另外,“在帶有finally子句的try塊中yield”定義在PEP 342中,這意味著只有Python 2.5以上版本才支持這個語法,在Python 2.4以下版本中會得到語法錯誤異常。
4.如果我需要在生成器的迭代過程中接入另一個生成器的迭代怎麼辦?寫成下面這樣好傻好天真。。
代碼如下:
>>> def sub_generator():
... yield 1
... yield 2
... for val in counter(10): yield val
...
這種情況的語法改進已經被定義在[PEP 380:委托至子生成器的語法]中,據說會在Python 3.3中實現,屆時也可能回饋到2.x中。實現後,就可以這麼寫了:
代碼如下:
>>> def sub_generator():
... yield 1
... yield 2
... yield from counter(10)
File "
yield from counter(10)
^
SyntaxError: invalid syntax
看到語法錯誤木有?現在我們還是天真一點吧~
有更多問題?請回復此文:)
4.3. 協同程序(coroutine)
協同程序(協程)一般來說是指這樣的函數:
1.彼此間有不同的局部變量、指令指針,但仍共享全局變量;
2.可以方便地掛起、恢復,並且有多個入口點和出口點;
3.多個協同程序間表現為協作運行,如A的運行過程中需要B的結果才能繼續執行。
協程的特點決定了同一時刻只能有一個協同程序正在運行(忽略多線程的情況)。得益於此,協程間可以直接傳遞對象而不需要考慮資源鎖、或是直接喚醒其他協程而不需要主動休眠,就像是內置了鎖的線程。在符合協程特點的應用場景,使用協程無疑比使用線程要更方便。
從另一方面說,協程無法並發其實也將它的應用場景限制在了一個很狹窄的范圍,這個特點使得協程更多的被拿來與常規函數進行比較,而不是與線程。當然,線程比協程復雜許多,功能也更強大,所以我建議大家牢牢地掌握線程即可:Python線程指南
這一節裡我也就不列舉關於協程的例子了,以下介紹的方法了解即可。
Python 2.5對生成器的增強實現了協程的其他特點,在這個版本中,生成器加入了如下方法:
1.send(value):
send是除next外另一個恢復生成器的方法。Python 2.5中,yield語句變成了yield表達式,這意味著yield現在可以有一個值,而這個值就是在生成器的send方法被調用從而恢復執行時,調用send方法的參數。
代碼如下:
>>> def repeater():
... n = 0
... while True:
... n = (yield n)
...
>>> r = repeater()
>>> r.next()
0
>>> r.send(10)
10
*調用send傳入非None值前,生成器必須處於掛起狀態,否則將拋出異常。不過,未啟動的生成器仍可以使用None作為參數調用send。
*如果使用next恢復生成器,yield表達式的值將是None。
2.close():
這個方法用於關閉生成器。對關閉的生成器後再次調用next或send將拋出StopIteration異常。
3.throw(type, value=None, traceback=None):
這個方法用於在生成器內部(生成器的當前掛起處,或未啟動時在定義處)拋出一個異常。
*別為沒見到協程的例子遺憾,協程最常見的用處其實就是生成器。
4.4. 一個有趣的庫:pipe
這一節裡我要向諸位簡要介紹pipe。pipe並不是Python內置的庫,如果你安裝了easy_install,